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Bayesian Inference Review

1 Y = observed data

2 θ = unknown parameter vector

3 Data likelihood: [Y |θ ]

4 Prior distribution: [θ ]

We wish to obtain the posterior distribution:

[θ |Y ] =
[Y |θ]× [θ ]

[Y ]
∝ [Y |θ ]× [θ ]

where [Y ] is the marginal distribution given by

[Y ] =

∫
[Y |θ ] [θ ] dθ
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Inference for Normal Mean

Suppose y1, y2, . . . , yn
iid∼ Normal(µ, σ2). We will assume σ2 is known for now.

Because µ is unconstrained, let’s start with a Normal prior:

µ ∼ Normal(µ0, τ
2)

where µ0 is our prior belief in the central location of µ and τ2 reflects our
uncertainty (i.e. larger τ2 → less information).

The the data likelihood and prior distributions are given by:

[y|µ ] = [y1, y2, . . . , yn|µ] ∝ exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)

[µ] ∝ exp

(
− 1

2τ2
(µ− µo)

2

)
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Inference for Normal Mean

After some simplification, we obtain the following result for the posterior:

µ|y ∝ exp

{
−1

2

[
µ2

(
n

σ2
+

1

τ2

)
− 2µ

(
n

σ2
ȳ +

1

τ2
µ0

)]}
We can find constants that can help re-express the above as a normal density.
After completing the squares we have:

µ |y ∼ Normal
(
µ̄, τ̄2

)
µ̄ =

[
n

σ2
+

1

τ2

]−1 [
n

σ2
ȳ +

1

τ2
µ0

]
τ̄2 =

[
n

σ2
+

1

τ2

]−1

where ȳ is the sample mean 1
n

∑
i yi.

When the posterior distribution belongs to the same family as the prior
distribution, we say the prior is conjugate for the likelihood.
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Normal Mean Example
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Posterior Distribution

Let’s first examine the posterior mean:

µ̄ =

[
n

σ2
+

1

τ2

]−1 [
n

σ2
ȳ +

1

τ2
µ0

]
=

nτ2

nτ2 + σ2
ȳ +

σ2

nτ2 + σ2
µ0

This is a weighted average of the prior mean µ0 and the sample mean ȳ

µ̄ is a biased estimate of µ!

The weights are inverse of the variance associated with the prior and
data-likelihood estimates

weight for µ0 is 1/τ2

weight for ȳ is 1/(σ2/n)

The posterior mean is closer to ȳ for large n and small σ2

The posterior mean is closer to µ0 for small τ2

If τ2 → ∞ (increasing prior uncertainty), µ̄ → the sample mean ȳ
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Posterior Distribution

Let’s look at the posterior variance now:

τ̄2 =

[
n

σ2
+

1

τ2

]−1

=
σ2τ2

nτ2 + σ2

For a non-zero τ2, note τ̄2 = σ2

n

(
τ2

τ2+σ2/n

)
< σ2

n . So using prior on µ

always leads to smaller standard error compared to that from the sample
mean.

This effect is reduced when:

n is large (i.e. data outweigh prior information)
τ2 is large (i.e. prior information is not helpful)
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Comparison to Frequentist Inference

We know that the sample mean ȳ has distribution:

ȳ ∼ Normal

(
µ,

σ2

n

)
(1)

Under our Bayesian analysis, if we assume the variance of the prior for µ is ∞,
then

µ ∼ Normal

(
ȳ,

σ2

n

)
(2)

Note the difference in how ȳ and µ are swapped in the above two distributions.

Equation (1) allows confidence statements on how ȳ behaves with
different repeated experiments

Equation (2) allows probabilistic statement on µ given the observed data
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The Inverse-Gamma Distribution

Suppose y1, y2, . . . , yn
iid∼ Normal(µ, σ2). We now will assume µ is known and

we wish to estimate σ2.

The most common distribution to model variance components is the
Inverse-Gamma distribution. The Inv-Gamma distribution has two parameters
α > 0 and β > 0. For a random variable y with support y > 0, it has density

f( y;α, β) =
βα

Γ(α)
y−(α+1)e−

β
y

Inv-Gamma is a skewed distribution for positive random variables. It has

E[Y ] =
β

α− 1
and V ar[Y ] =

β2

(α− 1)2(α− 2)
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Inverse-Gamma (a, b) Density
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Bayesian Inference for Population Variance

Let’s assume σ2 ∼ Inv-Gamma(α, β). Then the posterior distribution is given by

[σ2|y] ∝ [y|σ2]× [σ2]

=
n∏

i=1

1√
2πσ2

exp

[
− 1

2σ2
(yi − µ)2

]
× βα

Γ(α)
(σ2)−(α+1)e

− β

σ2

∝ (σ2)−n/2 exp

[
−

n∑
i=1

1

2σ2
(yi − µ)2

]
(σ2)−(α+1)e

− β

σ2

= (σ2)−n/2−(α+1) exp

[
−

n∑
i=1

1

2σ2
(yi − µ)2 − β

σ2

]

= (σ2)−[(n/2+α)+1)] exp

[
− 1

σ2

(
1

2

n∑
i=1

(yi − µ)2 + β

)]

Treating σ2 as the random variable, notice that

[σ2|y] ∼ Inv-gamma

(
n

2
+ α,

1

2

n∑
i=1

(yi − µ)2 + β

)
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Bayesian Inference for Population Variance

The Inverse-Gamma prior distribution on σ2 has mean β
α−1 . The posterior

Inverse-Gamma distribution has mean

E[σ2|y] =

1

2

∑n
i=1(yi − µ)2 + β

n/2 + α− 1

The values of α and β have the interpretation of a pilot study that estimated
σ2 with 2α sample size, and sum of squares 2β

Assume the prior mean β
α−1 to be fixed. Note that when α, β → 0 (less prior

information),

E[σ2|y] =

1

2

∑n
i=1(yi − µ)2

n/2− 1
≈ σ2

mle for large n
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Effects of Inverse-Gamma Prior
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Prior and Posterior Distributions

For estimating population mean and variance, we used prior distributions
that are the same as their corresponding posterior distributions. These
priors are known as conjugate priors. They are convenient because the
posterior density is available in closed-form.

We can often find uninformative/vague priors such that the posterior
distributions are very close to that from a Frequentist inference.

For vague priors and large sample size, we also have Bayesian central
limit theorem, where the posterior distribution can be approximated by a
normal distribution.

In practice, data analyses usually utilize uninformative (proper or
improper) priors.

Prior information is particularly useful when the sample size is small.

Posterior distributions can be viewed as the prior distributions being
updated by the data.
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Multi-Parameter Model

Often the data likelihood is determined by more than one parameter:

[y | θ1, θ2, ..., θP ]

Example:

Inference for Normal means with unknown variances

Regression model with multiple regression coefficients

In a Bayesian framework, we need to assign a prior to each unknown
parameter. We often assume they are independent:

[θ1, θ2, . . . , θP ] =

P∏
k=1

[ θk ]

Our goal is to obtain the joint posterior distribution:

[ θ1, θ2, ..., θP |y]
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Multi-Parameter Model

The joint posterior distribution not only contains information on the unknown
parameters, but also their dependence-structure. Note that the joint posterior
[ θ1, θ2, ..., θP |y] is different from:

1 the marginal posterior distribution:

[ θ1 |y] =
∫
[ θ1, θ2, ..., θP |y] dθ2, . . . , dθP

This describes the information on θ1 after accounting for uncertainties in
the other parameters (nuisance parameters).

2 the full conditional distribution:

[ θ1 |y, θ2, ..., θP ] ∝ [y | θ1, θ2, ..., θP ] [θ1]

This describes the posterior distribution of θ1 given the other parameter
values are known.
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Bayesian Computation

Consider a model with multiple parameters θ = (θ1, θ2, . . . , θP ). Here θ may
include regression coefficients and residual errors. To obtain the marginal
posterior distributions, it becomes increasingly difficult to perform integration
over θ. For example, to make inference on θ1 we need

[θ1|y] =
∫

· · ·
∫
[θ1, θ2, . . . , θp |y] dθ2dθ3 . . . dθp

Often, the desired marginal distribution is also not a standard probability
density.

One approach is to perform numerical integration. Specifically, we will
generate samples/realizations from the joint distribution.

θ(k) ∼ [θ1, θ2, . . . , θp |y]

We can then make inference on by examining the marginal distribution of the
sampled values.
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Joint Distribution of σ2 and µ
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Bayesian Inference via Monte Carlo Simulations

Given K samples of µ(k), we can compute several useful statistics for inference.

Posterior mean:

E[µ |y] =
∫

µ [µ |y] dµ ≈ 1

K

K∑
k=1

µ(k)

Posterior variance:

V ar[µ |y] =
∫

(µ− E[µ |y])2 [µ |y] dµ ≈ 1

K

K∑
k=1

(µ(k))2 −

[
1

K

K∑
k=1

µ(k)

]2

Exceedance probability:

P (µ > 0 |y) =
∫ ∞

0

[µ |y] ≈ 1

K

K∑
k=1

Iµ(k)>0
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Markov Chain Monte Carlo (Gibbs Sampler)

Markov Chain Monte Carlo (MCMC) is an algorithm to obtain realizations
from a high-dimensional probability density. Assume we have three
parameters θ1, θ2, and θ3.

1 Set initial values of θ1, θ2, and θ3
2 For the k + 1th iteration

1 Draw (update) a new θ
(k+1)
1 from it’s full conditional distribution:

θ
(k+1)
1 ∼ [θ1|θ(k)2 , θ

(k)
3 ,y]

2 Draw (update)

θ
(k+1)
2 ∼ [θ2|θ(k+1)

1 , θ
(k)
3 ,y]

3 Draw (update)

θ
(k+1)
3 ∼ [θ3|θ(k+1)

1 , θ
(k+1)
2 ,y]

3 Repeat step 2 until convergence.

4 Discard the first B-many samples as burn-in (pre-convergence) samples.

Note that the generated samples θ
(1)
1 , θ

(2)
1 , θ

(3)
1 , . . . are dependent.
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Gibbs Sampler for Normal Mean and Variance

Gibbs algorithm to sample µ and σ2

1 Set initial values (e.g. µ = 0, σ2 = 1)
2 For the k + 1th iteration

1 Draw µ(k+1) from

Normal

([
n

σ2,(k)
+

1

τ2

]−1 [
n

σ2,(k)
Ȳ +

1

τ2
µ0

]
,

[
n

σ2,(k)
+

1

τ2

]−1
)

2 Draw σ2,(k+1) from

Inv-Gamma

(
n

2
+ α,

1

2

n∑
i=1

(yi − µ(k+1))2 + β

)
3 Repeat step 2 until convergence

4 Discard the first B-many samples as burn-in (pre-convergence) samples
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Example R Code
y <- c(4.2, 6.6, 5.1, 2.0, 2.8, 3.2, 4.7, 4.1, 7.3, 0.8) # Data
n <- length(y) # Sample size
mu <- 0 # Initial values for mu
sigma2 <- 1 # Initial values for sigma2
mu0 <- 0 # Prior mean for mu
tau2 <- 5^2 # Prior variance for mu
alpha <- 10 # Prior alpha value for sigma2
beta <- 50 # Prior beta value for sigma2
n.iter <- 5000 # Number of MCMC samples

mu.save <- numeric(n.iter)
sigma2.save <- numeric(n.iter)

# Run Gibbs Sampler!
for(i in 1:n.iter){

# Step 1) Update mu
mu.V <- 1 / (n/sigma2 + 1/tau2)
mu.M <- mu.V * (n/sigma2*mean(y) + mu0 / tau2)
mu <- rnorm(1, mean = mu.M, sd = sqrt(mu.V))

# Step 2) Update sigma2
sigma2 <- 1 / rgamma(1, shape = n/2 + alpha, rate = sum((y - mu)^2)/2 + beta)

# Store updates
mu.save[i] <- mu
sigma2.save[i] <- sigma2

}
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Trace Plots
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Gibbs Sampler Paths
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Other Sampling Approaches

The Gibbs sampler example above is possible because we have the full
conditional distributions of µ and σ2 in closed-form that are easy to sample
from.

Additional samplers have been developed to sample from a density that we
only know up to a proportional constant.

Adaptive rejection sampling

Slice sampler

Random-walk Metropolis-Hastings

Hamiltonian Metropolis-Hastings

These algorithms require tuning that determines how to move (jump)
efficiently in the multi-dimensional posterior sample space. BUGS, JAGS, and
STAN will employ these automatically when Gibbs sampler is not available.

BIOS 525 Emory University 31 October 2022 26 / 73



Linear Regression Model

We will first consider the following multiple linear regression model. For
i = 1, . . . , n, assume

yi = β1xi1 + β2xi2 + . . .+ βpxip + ϵi, ϵi
iid∼ Normal(0, σ2)

Here we have (p+ 1) unknown parameters (β1, . . . , βp, σ
2).

The above model can be written in matrix form and the observed data vector
y has distribution

y ∼ Normal
(
Xβ, σ2In×n

)
with likelihood

[y|β, σ2] = (2πσ2)−
n
2 exp

[
− 1

2σ2
(y −Xβ)′(y −Xβ)

]
To carry out Bayesian inference, we need to assign prior distributions for β
and σ2.
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Priors for Linear Regression Model

The standard priors for linear regression parameters are non-informative
multivariate normal distribution for β and inverse-gamma for σ2:

β ∼ Normal (µ0, τ
2Ip×p ) and σ2 ∼ Inv-Gamma(c0, d0)

where τ2 is set to be large (e.g. 10000), c0 and d0 are set to be small (e.g.
0.0001), and µ0 is often set to be 0.

The above also assume that the regression coefficients are a priori independent
of each other. These hyper-parameters choices attempt to reflect a lack of
prior information for the parameters.

Estimation is usually carried out using a Gibbs sampler that updates β and
σ2 iteratively. We will need to calculate the full conditional distribution of

[β |σ2,y ] and [σ2 |β,y ]

It terms out that the above two distributions have closed-form solutions.
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Full Conditional Distribution for Linear Regression

Full conditional distribution of β

[β |σ2,y ] ∼ Normal
(
µ̃, Ṽ

)
where

µ̃ =
[
σ−2(X′X) + τ−2Ip×p

]−1 [
σ−2(X′y) + τ−2µ0

]
Ṽ =

[
σ−2(X′X) + τ−2Ip×p

]−1

Full conditional distribution of σ2

[σ2 |β,y ] ∼ Inv-Gamma
(
c̃, d̃
)

where

c̃ =
n

2
+ c0 and d̃ =

∑n
i=1(yi − xiβ)

2

2
+ d0

Note the similarities between the above two expressions and what we saw for
the univariate Normal mean and variance.
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Bayesian Random Intercept Model

A Bayesian version of the random intercept model is complete with prior
distributions assigned to all the unknown parameters.

yij = αi +XT
ijβ + ϵij

αi ∼ Normal(α0, τ
2) ϵij ∼ Normal(0, σ2)

Priors:
β ∼ Normal(0, v2βIp×p)

α0 ∼ Normal(0, v2α)

σ2 ∼ Inv-Gamma( cσ, dσ )

τ2 ∼ Inv-Gamma( cτ , dτ )

To reflect uninformative priors, we often set v2β and v2α to be large (e.g. 10002)
and cσ, dσ, cτ , dτ to be small.

Viewing αi ∼ Normal(α0, τ
2) as another prior distribution, here we have 3

levels of hierarchy!
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Bayesian Random Slope Model

Similarly, for random intercept and a random slope on covariate xij :

yij = α0i + α1ixij +XT
i,−jβ + ϵij[

α0i

α1i

]
∼ Normal

(
α =

[
α0

α1

]
, Σ2×2

)
ϵij ∼ Normal(0, σ2)

Priors:
β ∼ Normal(0, v2βIp×p )

α ∼ Normal(0, v2αI2×2 )

σ2 ∼ Inv-Gamma( cσ, dσ )

Σ ∼ Bivariate Inv-Gamma( r, R )

We treat the random effects as realizations from a bivariate Normal
distribution with population mean α and population covariance Σ.
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Linear Regression Example

Consider a simple linear regression analysis. We wish to fit the model

yi = β0 + β1xi + ϵi, ϵi
iid∼ Normal(0, σ2)
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Installing JAGS

We will use JAGS (Just Another Gibbs Sampler) to fit Bayesian models.
JAGS is a cross-platform engine for the BUGS language.

Some housekeeping:

Install JAGS here (make sure to select the correct version for your OS)

Install the R2jags R package

Other R packages such as brms, rstanarm, MCMCpack, NIMBLE, and
rethinking may be used to fit Bayesian models as well.
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Working with JAGS in R

> library(R2jags)
> jags
function (data, inits, parameters.to.save, model.file = "model.bug",

n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter/2),
n.thin = max(1, floor((n.iter - n.burnin)/1000)), DIC = TRUE, jags.seed = 123, ...)

data: a vector or list of the data objects used by the model

inits: a list of starting values

parameters.to.save: character vector of the parameters to save

model.file: file containing the model written in BUGS code

n.chains: number of Markov chains (deafult: 3)

n.iter: number of total iterations including burn-in

n.burnin: number of burn-in iterations

n.thin: thinning rate

DIC: logical; if TRUE (default) compute deviance, pD, and DIC

jags.seed: random seed for JAGS. Same seed = same posterior samples
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Linear Regression Example - JAGS Model

# Simulate linear regression data
n <- 100
X <- runif(n, 0, 5)
Y <- 2 + 2*X + rnorm(n)

# Specify JAGS model
jags.SLR <- function(){

# Data Likelihood
for(i in 1:n){

Y[i] ~ dnorm(mu[i], sigma2.inv)
mu[i] = beta0 + beta1 * X[i]

}

# Prior distribution
beta0 ~ dnorm(0, 1e-06)
beta1 ~ dnorm(0, 1e-06)
sigma2.inv ~ dgamma(0.0001, 0.0001)
sigma2 = 1 / sigma2.inv

}

# Fit JAGS model
SLR.fit <- jags(data = list("Y", "X", "n"), model.file = jags.SLR,

parameters.to.save = c("beta0", "beta1", "sigma2"), DIC = FALSE,
n.chain = 1, n.iter = 20000, n.burnin = 10000, n.thin = 1)

SLR.mcmc <- as.mcmc(SLR.fit)
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Trace Plots and Marginal Posterior Densities
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Posterior Summary Statistics

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta0 1.8459 0.20015 0.0020015 0.0020762
beta1 2.0516 0.07183 0.0007183 0.0007339
sigma2 0.9681 0.14187 0.0014187 0.0014620

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta0 1.4575 1.7095 1.8438 1.981 2.240
beta1 1.9106 2.0038 2.0527 2.100 2.190
sigma2 0.7292 0.8677 0.9557 1.054 1.285

Mean: mean of the posterior distribution (point estimate)

SD: std. deviation of the posterior distribution (uncertainty measure)

Naive SE: standard error of the posterior mean (
√
SD/iterations). This is

a measure of Monte Carlo error for the point estimate

Time-series SE: same as Naive SE but corrects for dependent samples.
You want this to be similar to Naive SE

Quantiles: quantile values of the posterior distribution (interval estimate)
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Posterior Summary Statistics

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta0 1.8459 0.20015 0.0020015 0.0020762
beta1 2.0516 0.07183 0.0007183 0.0007339
sigma2 0.9681 0.14187 0.0014187 0.0014620

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta0 1.4575 1.7095 1.8438 1.981 2.240
beta1 1.9106 2.0038 2.0527 2.100 2.190
sigma2 0.7292 0.8677 0.9557 1.054 1.285

A 95% posterior interval for β1 is:

2.05± 1.96× 0.072 (assuming normality of the posterior)
(1.91, 2.19) (without normality assumption)

The posterior medians of the regression coefficients are close to the
posterior means. So the posterior distributions appear to be symmetric

Because the posterior distribution of σ2 is skewed to the right, an
appropriate 95% posterior interval is (0.73, 1.29)
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Compare with Frequentist Results

> summary(lm(Y ~ X))

Residuals:
Min 1Q Median 3Q Max

-3.2036 -0.5318 0.0283 0.7694 2.1301

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.84819 0.19934 9.272 4.61e-15 ***
X 2.05103 0.07158 28.654 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9735 on 98 degrees of freedom
Multiple R-squared: 0.8934,Adjusted R-squared: 0.8923
F-statistic: 821 on 1 and 98 DF, p-value: < 2.2e-16

The regression coefficients are nearly identical to the Bayesian analysis, and
σ̂2 = 0.97352 = 0.9477 is close to before. This is because we used
non-informative priors.
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Toenail Dataset

A multi-center randomized controlled trial with 298 subjects to compare the
effects of two drugs on toenail infection. Response to treatment was evaluated
at week 0, 1, 2, 3, 6, 9, and 12.

Variables:

id: subject ID

response: length of unaffected nail length for the big toenail (mm)

treat: 0 for Itraconazol and 1 for Laisil

time: number of weeks

We have longitudinal data with measurements nested within subjects.
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Toenail Response Trajectory
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Interaction Model for the Toenail Data

Consider a model with interaction between treatment and time:

yij = αi + β1treati + β2timeij + β3 ∗ treati × timeij + ϵij

αi ∼ N(α0, τ
2) ϵij ∼ N(0, σ2)

α0 ∼ Normal(0, 100, 0002)

β ∼ Normal(0, 100, 0002Ip×p)

σ2 ∼ Inv-Gamma( 0.0001, 0.0001 )

τ2 ∼ Inv-Gamma( 0.0001, 0.0001 )
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Random Intercept Model in JAGS

# Random Intercept Model
toe.jags1 <- function(){

# Data Likelihood
for(i in 1:n.obs){

response[i] ~ dnorm(mu[i], prec1)
mu[i] = alpha[id[i]] + beta1*treat[i] + beta2*time[i]+ beta3*time[i]*treat[i]

}

for(j in 1:n.id){ alpha[j] ~ dnorm(alpha0, prec2) }

# Priors
alpha0 ~ dnorm(0, 1E-10)
beta1 ~ dnorm(0, 1E-10)
beta2 ~ dnorm(0, 1E-10)
beta3 ~ dnorm(0, 1E-10)
prec1 ~ dgamma(0.0001, 0.0001)
prec2 ~ dgamma(0.0001, 0.0001)
sigma2 = 1/prec1
tau2 = 1/prec2

}

toe.fit1 <- jags(data = list("response", "treat", "time", "id", "n.id", "n.obs"),
model.file = toe.jags1, DIC = FALSE, jags.seed = 1031,
parameters.to.save = c("alpha0","beta1","beta2","beta3","sigma2","tau2"),
n.chain = 1, n.iter = 20000, n.burnin = 10000, n.thin = 4)

toe.mcmc0 <- as.mcmc(toe.fit1)
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Trace Plots and Marginal Posterior Densities
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Trace Plots and Marginal Posterior Densities
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Pairwise Joint Posteriors
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Making Posterior Inference

Given our fitted model, what kind of questions can we answer?

Point estimates and intervals for regression coefficients

Point estimates and intervals for variance components

Point estimates and intervals for functions of parameters

Predictions for in- and out-of-sample subjects

Probability statements about parameters

Comparison of subject-specific random effects
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Posterior Inference: Parameter Estimates

Parameter Post Mean 95% Post Int
α0 2.52 (2.02, 3.02)
β1 0.24 (-0.47, 0.95)
β2 0.56 (0.52, 0.61)
β3 0.05 (-0.01, 0.11)
σ2 6.96 (6.47, 7.48)
τ2 6.58 (5.40, 7.96)

Compared to LMM results:

Parameter Estimate 95% CI
α0 2.52 (2.03, 3.00)
β1 0.25 (-0.43, 0.93)
β2 0.56 (0.52, 0.61)
β3 0.05 (-0.01, 0.11)
σ2 6.95
τ2 6.54

There is some evidence that treatment effect increases with time (β3 > 0).
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Changes in Average Response by Week
Posterior Mean and 95% Credible Interval by week and treatment.
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Posterior Inference: exp(β1)− β2
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Posterior Inference: ICC
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Posterior Inference: Pr(ICC > 0.5)
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Posterior Inference: Random Effects
We also have posterior samples of every random effect αi.

Evidence that the random effect for subject 1 is greater than for subject 2?

> mean(toe.post0$alpha.1. > toe.post0$alpha.2.)
[1] 0.6652
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Posterior Inference: Predictions

Given a hierarchical model:

yij = αi +XT
ijβ + ϵij

αi ∼ N(α0, τ
2) ϵij ∼ N(0, σ2)

we have two types of predictions.

1 New observation for an observed cluster (in-sample):

yij∗ ∼ Normal (αi +XT
ij∗β, σ

2)

2 New observation for a new cluster (out-of-sample:

yi∗j∗ ∼ Normal (α0 +XT
i∗j∗β, σ

2 + τ2)

Note that yij∗ is conditional on the group-specific intercept αi, which we can
estimate. Out-of-sample predictions need to consider all possible values of αi.
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In-Sample Prediction

Let θ = (αi∗ , α0,β, σ
2, τ2) denote all the model parameters.

[yij∗ |y] =
∫
[yij∗ , αi, α0,β, σ

2, τ2 |y] dθ

=

∫
[yij∗ |αi, α0,β, σ

2, τ2,y]× [αi, α0,β, σ
2, τ2 |y] dθ

=

∫
[yij∗ |αi,β, σ

2]× [αi, α0,β, σ
2, τ2 |y] dθ

=

∫
[yij∗ |αi,β, σ

2]× [αi,β, σ
2 |y] dθ

Numerically, to obtain posterior predictive distribution of yij∗ , this means

1 Simulate αi,β, σ
2 from [αi,β, σ

2 |y]
2 Simulate yij∗ from [yij∗ |αi,β, σ

2]
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Out-of-Sample Prediction

Let θ = (αi∗ , α0,β, σ
2, τ2) denote all the model parameters.

[yi∗j∗ |y] =
∫
[yi∗j∗ , αi∗ , α0,β, σ

2, τ2 |y] dθ

=

∫
[yi∗j∗ |αi∗ , α0,β, σ

2, τ2,y]× [αi∗ , α0,β, σ
2, τ2 |y] dθ

=

∫
[yi∗j∗ |αi∗ ,β, σ

2]× [αi∗ , α0,β, σ
2, τ2 |y] dθ

=

∫
[yi∗j∗ |αi∗ ,β, σ

2]× [αi∗ |α0,β, σ
2, τ2,y]× [α0,β, σ

2, τ2 |y] dθ

=

∫
[yi∗j∗ |αi∗ ,β, σ

2]× [αi∗ |α0, τ
2]× [α0,β, σ

2, τ2 |y] dθ.

Note that we only need the posterior distribution [α0,β, σ
2, τ2 |y]. We then

average overall possible values of αi∗ based on [αi∗ |α0, τ
2].
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Posterior Inference: Prediction Example

Using the random intercept model for the toenail data...

Predict the response for subject i when treati = 1 and timeij = 15

for(k in 1:n.id){

pred.mu1[k] = alpha[k] + beta1 + beta2*15 + beta3*15

pred1[k] ~ dnorm(pred.mu1[k], prec1)

}

Predict the response for a new subject when treati = 1 and timeij = 15

pred.alpha ~ dnorm(alpha0, prec2)

pred.mu2 = pred.alpha + beta1 + beta2*15 + beta3*15

pred2 ~ dnorm(pred.mu2, prec1)

Question: Did these lines need to be included in the JAGS model?
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Posterior Inference: Prediction Example

Post. Mean Post. SD 95% P.I.
Within-sample (Subject 1) 14.13 2.81 (8.57, 19.87)
Within-sample (Subject 2) 13.70 2.78 (8.01, 19.05)
Within-sample (Subject 3) 10.00 2.88 (4.36, 15.51)

Out-of-sample (typical subject) 11.91 3.59 (4.77, 18.80)

Within-sample predictions have smaller posterior intervals because we
have data to estimate the random effects

Posterior standard deviation may vary across subjects because each
random effect has different uncertainty depending on how much shrinkage
there is
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Random Intercept and Slope Model for the Toenail
Data

Consider adding a random slope to the time variable

yij = α0i + β1treati + α1itimeij + β2 ∗ treati × timeij + ϵij[
α0i

α1i

]
∼ Normal

(
α =

[
α0

α1

]
, Σ2×2

)
ϵij ∼ Normal(0, σ2)

Priors:

β ∼ Normal(0, v2βIp×p )

α ∼ Normal(0, v2αI2×2 )

σ2 ∼ Inv-Gamma( cσ, dσ )

Σ ∼ Bivariate Inv-Gamma( r, R )
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Prior for Random Effects Covariance Matrix

In JAGS, a multivariate normal distribution is specified by

∼ dmnorm (µ,Ω)

where Ω is the precision matrix (inverse of the covariance matrix).

The Inverse-Wishart distribution:

is a multivariate generalization of the inverse-Gamma distribution

is a probability distribution for random covariance matrices! This is
tricky because a covariance matrix Σ needs to be

symmetric
positive definite: a′Σa > 0 for all vector a ̸= 0

if Σ ∼ Inv-Wishart(r, rR), then

E[Σ ] =
rR

r − p− 1

where R is a p× p positive definite matrix and r > p− 1 is a real number.
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The Inverse-Wishart Distribution
The Inverse-Wishart distribution is useful for making inference about a
population covariance matrix. Specifically, let θi = (θ0i, θ1i), for i in 1, . . . , J .
Let’s assume

θi ∼ N(0,Σ)

Σ ∼ Inv-Wishart(r,R).

Then let A be the the sample covariance matrix. We can show that the
posterior distribution of [Σ|data] is

[Σ|data] ∼ Inv-Wishart(r + J, rR+ JA),

which has mean

E[Σ|data] = rR+ JA

r + J
.

Note that for small r the above is approximately JA
J = A.

Therefore, for prior Σ ∼ Inv-Wishart(r,R), we can think of

R as the prior assumption on the random effect covariance matrix, and

r as the sample size that R is based on
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The Inverse-Wishart Distribution: Examples

Some realizations from Inv-Wishart

(
r = 2, rR = 2 ×

[
1 0
0 1

])
.

> riwish (2, 2*diag(2)) > riwish (2, 2*diag(2)) > riwish (2, 2*diag(2))
[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 7.993478 1.056120 [1,] 0.9417932 1.434751 [1,] 153.62756 -68.26434
[2,] 1.056120 1.184883 [2,] 1.4347506 6.704089 [2,] -68.26434 30.74045

Some realizations from Inv-Wishart

(
r = 20, rR = 20 ×

[
1 0
0 1

])
.

> riwish (20, 20*diag(2)) > riwish (20, 20*diag(2)) > riwish (20, 20*diag(2))
[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 1.0477453 -0.4198504 [1,] 0.7991031 0.1561055 [1,] 1.09554075 -0.09640348
[2,] -0.4198504 0.8217627 [2,] 0.1561055 1.1227496 [2,] -0.09640348 0.94267139

Some realizations from Inv-Wishart

(
r = 200, rR = 200 ×

[
1 0
0 1

])
.

> riwish (200, 200*diag(2)) > riwish (200, 200*diag(2)) > riwish (200, 200*diag(2))
[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 0.92784643 -0.04097586 [1,] 0.97532764 0.05100576 [1,] 0.99540455 -0.05506508
[2,] -0.04097586 0.90093856 [2,] 0.05100576 1.06659492 [2,] -0.05506508 1.10315592
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Random Intercept and Slope Model in JAGS

# Random Intercept and Slope Model
toe.jags3 <- function(){

# Data Likelihood
for(i in 1:n.obs){

response[i] ~ dnorm(mu[i], prec1)
mu[i] = alpha[ id[i],1] + beta1*treat[i] + alpha[id[i],2]*time[i]+ beta2*time[i]*treat[i]

}

for (j in 1:n.id){ alpha[j,1:2] ~ dmnorm(alpha_mu, Omega) }

# Priors
alpha_mu[1] ~ dnorm(0, 1E-10)
alpha_mu[2] ~ dnorm(0, 1E-10)
beta1 ~ dnorm(0, 1E-10)
beta2 ~ dnorm(0, 1E-10)
prec1 ~ dgamma(0.0001, 0.0001)
Omega[1:2, 1:2] ~ dwish(R, 2)
sigma = 1 / prec1
BigSigma = inverse(Omega)

}

# Get estimate for R
toe.lmer2 <- lmer(response ~ (1 + time|id) + treat + time + treat*time, data = toe)
summary(toe.lmer2)
R <- 2 * matrix(c(7.37, -0.39, -0.39, 0.23), ncol = 2)
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Random Intercept and Slope Model Results

Parameter Post Mean 95% Post Int
α0 2.45 (1.99, 2.94)
α1 0.59 (0.50, 0.69)
β1 0.28 (-0.39, 0.94)
β2 0.03 (-0.09, 0.15)
σ2 3.16 (2.91, 3.40)
Σ11 7.45 (6.14 8.87)
Σ22 0.23 (0.19, 0.28)

Cor(α0i, α1i) -0.39 (-0.50, -0.27)
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Ohio Lung Cancer Example

Recall the final model fit last week for the Ohio lung cancer example:

ystk ∼ Poisson(λstk × popstk)

log (λstk) = θs + β0 + β1sexk + β2racek + β3sexk × racek + β4yeart

θs ∼ Normal(0, τ2)
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Ohio Lung Cancer Example: JAGS code

# JAGS Model
lung.jags <- function(){

# Data Likelihood
for(i in 1:n.obs){

death[i] ~ dpois(lambda[i]*pop[i])
log(lambda[i]) = beta0 + theta[cty[i]] + beta1*sex[i] + beta2*race[i]

+ beta3*sex[i]*race[i] + beta4*year[i]
}

for(s in 1:n.cty){theta[s] ~ dnorm(0, tau2.inv)}

# Priors
beta0 ~ dnorm(0, 1e-10)
beta1 ~ dnorm(0, 1e-10)
beta2 ~ dnorm(0, 1e-10)
beta3 ~ dnorm(0, 1e-10)
beta4 ~ dnorm(0, 1e-10)
tau2.inv ~ dgamma(0.0001, 0.0001)
tau2 = 1 / tau2.inv

}

Note: JAGS might not take factors well, so code your own indicator variables.
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Ohio Lung Cancer Example: Parameter Estimates

Let’s compare the frequentist parameter estimates obtained using glmer() with
nAGQ = 100 to the MCMC results.

Covariate GLMM JAGS
Intercept β0 -7.333 (0.024) -7.331 (0.025)
Female β1 -0.885 (0.010) -0.885 (0.010)
Non-white β2 -0.029 (0.017) -0.029 (0.016)
Female × Non-white β3 -0.219 (0.031) -0.220 (0.031)
Year β4 0.023 (0.002) 0.023 (0.002)
τ2 0.1982 0.2012 (0.007)

The results are nearly identical.
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Crossover Trial Example

Recall the final model fit last week for the crossover trial example:

yij ∼ Binomial(pij)

logit (pij) = θi + β0 + β1trtij + β2periodij + β3trtij × periodij

θi ∼ Normal(0, τ2)
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Crossover Trial Example: JAGS code

# JAGS Model
cross.jags <- function(){

# Data Likelihood
for(i in 1:n.obs){

outcome[i] ~ dbern(p[i])
logit(p[i]) = beta0 + theta[ID[i]] + beta1*trt[i] + beta2*period[i]

+ beta3*trt[i]*period[i]
}

for(s in 1:n.ID){theta[s] ~ dnorm(0, tau2.inv)}

# Priors
beta0 ~ dnorm(0, 1e-10)
beta1 ~ dnorm(0, 1e-10)
beta2 ~ dnorm(0, 1e-10)
beta3 ~ dnorm(0, 1e-10)
tau2.inv ~ dgamma(0.0001, 0.0001)
tau2 = 1 / tau2.inv

}
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Crossover Trial Example: Parameter Estimates

Let’s compare the frequentist parameter estimates obtained using glmer() with
nAGQ = 100 to the MCMC results.

Covariate GLMM JAGS
Intercept β0 -4.98 (2.12) -11.45 (7.42)
Treatment β1 3.58 (2.11) 8.17 (6.35)
Period β2 2.77 (2.02) 6.89 (6.16)
Treatment × Period β3 -3.32 (3.27) -7.73 (9.23)
τ2 4.912 13.552 (232.88)

Not so great... Why?
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Crossover Trial Example: Trace Plots
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Crossover Trial Example: Trace Plots

BIOS 525 Emory University 31 October 2022 72 / 73



Bayesian Hierarchical Model Summary

For linear mixed models, results from Frequentist and Bayesian analysis are
typically similar. Consider a Bayesian analysis when you:

Have only a small sample size

Want to make inference on random effect estimates and the heterogeneity
parameters

Want to quantify and reflect all sources of uncertainties

Need to relax model assumptions

Want to incorporate a priori information through prior distributions

Some limitations for Bayesian inference

A lot more computationally intensive

Sometimes priors need to be carefully chosen, especially for complex
models

Important to evaluate sensitivity of model results to prior specification
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