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Poisson Regression Examples

We use Poisson regression when the outcome variable is a count. We can use
the raw counts themselves or rates, which are simply the observed counts per
some measure of population, space, time, etc.

Number of grandchildren

Number of asthma-related visits to an emergency room per day

Number of drug overdoses per 100,000 people

Number of students per square foot

We want to find helpful predictors to help explain these counts

Number of children

Amount/concentration of air pollutants, temperature

Opioid prescribing rates

Rollins building, department offering the course
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Poisson Distribution

We say that Y ∼ Poisson(µ), µ > 0, if Y takes on non-negative integer value y
with probability

fY (y) = Pr(Y = y) =
e−µµy

y!
, y = 0, 1, 2, . . .

Some notes:

Mean and variance are equal (both are µ)

For small µ, the distribution of Y is right-skewed

For large µ, Y
·∼ Normal
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Linear Regression for Poisson Outcome?

We are interested in modeling µ as a function of predictor variables X.

What if we use the linear regression model?

µ = E [Y | X] = β0 + β1X1 + . . .+ βpXp

Problems:

Does not restrict estimates or confidence intervals for µ to be positive.

Violates the assumptions of normality and constant variance.
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Generalized Linear Model (GLM)

1 Random Component:

Yi ∼ fYi
(yi; θi, ϕ) = exp

{
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
2 Systematic Component:

ηi =

p∑
j=1

βjxij = XT
i β

3 Link Function:
ηi = g(E (Yi))

Canonical Link: g(E (Yi)) = θi
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Poisson Log-Linear Model

Suppose Yi ∼ Poisson(µi). To identify the canonical link function for Poisson
regression, write the PDF of Yi ∼ Poisson(µi) in its exponential family form:

fYi
(yi;µi) =

e−µiµyi

i

yi!
= exp {yi logµi − µi − log yi!}

From here we can identify that the canonical link is g(µi) = log µi. Does this
make sense?

µi ∈ (0,∞) ⇒ g(µi) ∈ (−∞,∞)

With this link, we form the Poisson log-linear model:

logµi = XT
i β

where µi = E [Yi | Xi]
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Estimation

As with any GLM, estimates of β are obtained by solving a system of score
equations. When using the canonical link, these equations reduce to

U(βj) =

n∑
i=1

(yi − µi)xij

a(ϕ)
= 0, j = 0, 1, . . . , p

In Poisson regression, a(ϕ) = 1 (constant) so we can ignore it.

The solution to the score equations, β̂, is obtained numerically:

Newton-Raphson algorithm

Fisher scoring algorithm

Iteratively reweighted least squares (IRLS) - typically used in software
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Interpretation: Response

Consider a single predictor model. Remember µ = E [Y | X].

log(E [Y | X]) = β0 + β1X

We can move back to the response scale by exponentiating both sides:

E [Y | X] = eβ0+β1X

If X = 0, we have the expected response for the reference category:

E [Y | X] = eβ0
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Interpretation: β1

log(E [Y | X]) = β0 + β1X

What happens on the log scale when we increase X by 1 unit?

log(E [Y | X = x+ 1]) = β0 + β1(x+ 1)

= β0 + β1x+ β1

= log(E [Y | X = x]) + β1

Rearranging,

β1 = log(E [Y | X = x+ 1])− log(E [Y | X = x])

β1: change in the log expected count of Y for a one unit increase in X.
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Interpretation: eβ1

log(E [Y | X]) = β0 + β1X

What happens on the response scale when we increase X by one unit?

E [Y | X = x+ 1] = eβ0+β1(x+1)

= eβ0+β1x+β1

= eβ0+β1x × eβ1

= E [Y | X = x]× eβ1

Rearranging,

eβ1 =
E [Y | X = x+ 1]

E [Y | X = x]

eβ1 : expected count of Y changes by a multiplicative factor of eβ1 for a
one unit increase in X. eβ1 is often called a risk ratio or relative risk and
is sometimes interpreted as a percentage increase/decrease.
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Confidence Intervals

A (100− α)% confidence interval for:

cβ̂1 (the effect of a c unit increase in X on the log expected count)

cβ̂1 ± z1−α/2 × c× SEβ̂1

ecβ̂1 (the effect of a c unit increase in X on the expected count)(
e

[
cβ̂1−z1−α/2×c×SEβ̂1

]
, e

[
cβ̂1+z1−α/2×c×SEβ̂1

])
log(E [Y | X]) (the log expected count given some covariates)

Xβ̂ ± z1−α/2 × SEXβ̂

E [Y | X] (the expected count given some covariates)(
e[Xβ̂−z1−α/2×SEXβ̂], e[Xβ̂+z1−α/2×SEXβ̂]

)
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Including an Offset

So far we have been predicting a “risk”, or rate per unit. In many cases, it
makes sense to adjust the rate to something more informative. We do this by
adding an offset predictor with a coefficient forced to be 1.

log(E [Y | X]) = log(t) + β0 + β1X ⇔ E [Y | X] = t× eβ0+β1X

Note that rearranging this is equivalent to

log

(
E [Y | X]

t

)
= β0 + β1X

Now we are predicting the expected count of Y per t. You might see the
regression coefficients referred to as relative rates or rate ratios.

It is appropriate to include an offset when you are interested in quantities such
as cases per 1,000 people, crimes per year, or adverse events per person-year.
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Poisson Regression Assumptions

The assumptions for Poisson regression differ from those for linear regression.

Linear Regression

Y | X ∼ Normal

Homoscedasticity

Existence

Independence

Linearity: E [Y | X] is a linear
function of the X’s

Poisson Regression

Y | X ∼ Poisson

Mean and variance are equal

Existence

Independence

Linearity: log(E [Y | X]) is a
linear function of the X’s
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Example: Major League Soccer (MLS)

The MLS is the top soccer league in the United States. There are 28 teams,
with each team having about 20-25 players.

One important metric of success is goal contributions. A player is credited
with a goal contribution (GC) if he either a) scores a goal directly, or b)
assists a goal-scorer (provides the final pass before the goal is scored).

In general, not a lot of goals are scored in soccer. So the number of GCs a
player accumulated over the course of a season is relatively low. For this
reason Poisson regression might perform better than linear regression.
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Example: Major League Soccer (MLS)

The dataset we will be working with (mls.csv) contains data for players from
every team during the 2022 MLS season. Some of the variables are:

Player: player name

Pos: position played (FW = Forward, MF = Midfielder, DF = Defender)

MP: matches played (there are 34 matches in a season)

Min: minutes played (a single match is 90 minutes)

Wage: annual wage (in $100,000s)
Gls: number of goals scored

Ast: number of assists provided

Research question:

How is annual salary associated with number of goal contributions?
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MLS Example: Univariate Analysis

Figure: Histograms of Outcome and Predictor Variables
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MLS Example: Data Pre-Processing

Calculate goal contributions (GC) as goals (Gls) + assists (Ast)

Restrict the sample to only include field players (no goalkeepers) with
more than 500 minutes of play time.

Log transform the skewed wage variable to improve efficiency.

Use effective matches played (eMP) as an offset variable

Some players might only get 10 minutes per match, and it is not fair to
compare their performance to players who play the entire game.
We can calculate effective matches played using

eMP =
Min

90

We will denote the offset (expected) count as “(expected) goal
contributions per 90 minutes”, or“(x)GCp90)”.
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MLS Example: Goal Contributions

Figure: Scatter plot of Goal Contributions
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MLS Example: Effective Matches Played

Figure: Matches Played vs. Effective Matches Played
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MLS Example: Initial Results

We will start with the following model:

log(E [GC | ·]) = log(eMP ) + β0 + β1lWage

Log Scale Response Scale
Estimate SE 95% CI Estimate 95% CI

β0 -2.042 0.046 (-2.133, -1.951) 0.130 (0.119, 0.142)
β1 0.383 0.022 (0.340, 0.427) 1.467 (1.405, 1.533)

Table: Parameter Estimates for Single Predictor Model

Players earning $100,000 (lWage = 0) have an xGCp90 of 0.13.

For a 1-unit increase in log annual wage (in $100,000s), xGCp90 increases
by 46.7%.
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MLS Example: Initial Results

We will start with the following model:

log(E [GC | ·]) = log(eMP ) + β0 + β1lWage

Log Scale Response Scale
Estimate SE 95% CI Estimate 95% CI

β0 -2.042 0.046 (-2.133, -1.951) 0.130 (0.119, 0.142)
β1 0.383 0.022 (0.340, 0.427) 1.467 (1.405, 1.533)

Table: Parameter Estimates for Single Predictor Model

For a 10% increase in a player’s wage, xGCp90 increases by a factor of
exp(log(1.1)× 0.383) = 1.037.

Players making $5,000,000 (lWage = 3.91) have an xGCp90 of
exp(−2.042 + 3.91× 0.383) = 0.58.
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The Saturated Model

For any regression model M , after finding the MLE β̂, we can obtain
predictions for each observation as µ̂i = g−1(XT

i β̂), where g(·) is the link
function.

The saturated model Ms is the model that perfectly fits the data

µ̃i = g−1(XT
i β̃) = yi ∀ i = 1, . . . , n

The number of parameters equals the number of observations

This model is overfit

The observed data log-likelihood l(µ) is maximized by µ̃
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Deviance

The deviance compares the fit of a given model M to the saturated model Ms.

The deviance of M with predictions µ̂i = g−1(XT
i β̂) is defined as:

DM ≡ −2ϕ {l(µ̂)− l(µ̃)}

=
−2ϕ

a(ϕ)

N∑
i=1

{
yi

(
θ̃i − θ̂i

)
−
[
b
(
θ̃i

)
− b

(
θ̂i

)]}

In many cases, a(ϕ) ∝ ϕ, and so D does not depend on ϕ

A related quantity is the scaled deviance

D∗
M =

DM

ϕ
= −2 {l(µ̂)− l(µ̃)}

If ϕ = 1 as in Poisson regression, DM = D∗
M .

This is equivalent to the likelihood ratio test statistic.
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Scaled Deviance: Examples

Poisson Regression (log link)

D∗
M = −2 {l(µ̂)− l(µ̃)}

= −2

n∑
i=1

{[yi log(µ̂i)− µ̂i]− [yi log(yi)− yi]}

= −2

n∑
i=1

{yi [log(µ̂i)− log(yi)]− (µ̂i − yi)}

= −2

n∑
i=1

{
yi log

(
µ̂i

yi

)
− (µ̂i − yi)

}

Other common examples:

Normal: D∗
M = 1

σ2

∑n
i=1 (yi − µ̂i)

2

Binomial: D∗
M = −2

∑n
i=1

{
yi log

(
µ̂i

yi

)
+ (mi − yi) log

(
mi−µ̂i

mi−yi

)}
BIOS 509 Emory University 10 April 2023 27 / 62



Deviance Goodness of Fit Test

When ϕ is known, the scaled deviance has an asymptotic distribution

D∗
M

·∼ χ2
n−p−1

where p is the number of predictors, and n is the number of observations.

Suppose we wish to test the fit of a model M :

H0 : M fits the data well H1 : M fits the data poorly

D∗
M ∼ χ2

n−p−1 under H0

If Pr(χ2
n−p−1 > D∗

M ) < α, then there is evidence of a lack of fit.
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Using Deviance for Model Comparison

The deviance GOF test is simply a comparison between the current and
saturated models. We can just as easily compare any two nested models using
a drop-in-deviance test, using the fact that the saturated model doesn’t
change.

Suppose we have fit two models, M1 and M2, where M1 has the parameters
β0, . . . , βp1

and M2 has β0, . . . , βp1
, βp1+1, . . . , βp2

. We can test the following:

H0 : βp1+1 = . . . = βp2
= 0 H1 : At least one of βp1+1, . . . , βp2

̸= 0

D∗
M1

−D∗
M2

= −2 {l(µ̂1)− l(µ̃)}+ 2 {l(µ̂2)− l(µ̃)}
= −2 {l(µ̂1)− l(µ̂2)}
∼ χ2

p2−p1

We can reject H0 if Pr(χ2
p2−p1

> D∗
M1

−D∗
M2

) < α, and conclude that at least
one of the additional terms in M2 improves upon the fit of M1.
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Pearson Goodness of Fit Test

As an alternative to deviance, we can use the Pearson X2 statistic:

X2 =

n∑
i=1

(yi − µ̂i)
2

V̂ar (Yi)
∼ χ2

n−p−1

Some Examples:

Yi ∼ Poisson(µi)

X2 =

n∑
i=1

(yi − µ̂i)
2

µ̂i

Yi ∼ Binomial(mi, pi)

X2 =

n∑
i=1

(yi −mip̂i)
2

mip̂i(1− p̂i)
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Pearson vs. Deviance GOF Test

Both the scaled deviance and Pearson X2 have an asymptotic χ2
n−p−1

distribution, and the two are often similar in magnitude.

If D∗ or X2 > χ2
n−p−1,1−α, there is sufficient evidence at the α level that

the candidate model has a poor fit

Deviance can be used to compare nested models, while Pearson X2 cannot

In cases where ϕ is known, deviance-based tests are equivalent to
likelihood ratio tests
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MLS Example: Model Comparison

We have established that wage is an important predictor of goal contributions,
but it is also worth considering position. For example, forwards are more
likely to score than defenders. Consider the model:

log(E [GC | ·]) = log(eMP ) + β0 + β1lWage+ β2MF + β3FW

We should also consider the possibility of interaction between wage and
position.

log(E [GC | ·]) = log(eMP ) + β1lWage+ β2MF + β3FW

+ β4lWage×MF + β5lWage× FW
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MLS Example: Model Comparison

Model Residual DF Residual Deviance
M0: NULL 457 1884.82
M1: Wage 456 1592.36
M2: Wage + Pos 454 1003.27
M3: Wage × Pos 452 984.27

Table: Poisson Model Comparison with Deviance

Test for significance of position given wage is already in the model:

H0 : β2 = β3 = 0 H1 : At least one of β2, β3 ̸= 0

D∗
M1

−D∗
M2

= 1592.36− 1003.27 = 589.09 ∼ χ2
2

⇒ Pr(χ2
2 > 589.09) < 0.0001

Conclusion: The addition of position improves the fit of a model already
containing annual wage.
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MLS Example: Goodness of Fit

Test for significance of interaction between wage and position:

H0 : β4 = β5 = 0 H1 : At least one of β4, β5 ̸= 0

D∗
M2

−D∗
M3

= 1003.27− 984.27 = 19 ∼ χ2
2

⇒ Pr(χ2
2 > 19) < 0.0001

Conclusion: The association between player wage and xGCp90 depends
on position.

So the interaction model fits best, but now let’s check how good it fits:

H0 : M3 fits the data well H1 : M3 fits the data poorly

D∗
M3

= 984.27 ⇒ Pr(χ2
452 > 984.27) < 0.0001

X2
M3

= 972.20 ⇒ Pr(χ2
452 > 972.20) < 0.0001

Both tests suggest there is still significant lack of fit!
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Overdispersion

When using Poisson regression we assume that the mean is equal to the
variance. However in many real-life applications, count data have variance
larger than the mean and are said to be overdispersed.

Underdispersion also exists, but is far less common in practice.

The two most popular methods for modeling overdispersed count data are
Quasi-Poisson and Negative Binomial regression.

If the mean model is correct but you do not account for overdispersion,

The estimates of β̂ are still consistent

The naive standard errors of β̂ are underestimated

Underestimated S.E. ⇒ large test statistics / narrow C.I. ⇒ small p-value
⇒ wrong decisions
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Quasi-Poisson Regression

Assumption: Var (Yi) = ϕµi

The Poisson score equations are replaced by “estimating” equations:

U(βj) =

n∑
i=1

(yi − µi)xij

ϕ
= 0, j = 0, 1, . . . , p

β̂ will stay the same, since ϕ is still a constant.

These are not “score” equations because they do not come from a true
likelihood.

But how do we estimate ϕ?
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Estimating ϕ̂

Recall the Pearson χ2 test statistic:

X2 =

n∑
i=1

(yi − µ̂i)
2

V̂ar(Yi)
=

n∑
i=1

(yi − µ̂i)
2

ϕµ̂i
∼ χ2

n−p−1

According to the expectation of χ2 random variables, E
[
X2

]
= n− p− 1

Rearranging,

E

[
1

n− p− 1

n∑
i=1

(yi − µ̂i)
2

µ̂i

]
= ϕ

And so we can estimate ϕ with

ϕ̂ =
1

n− p− 1

n∑
i=1

(yi − µ̂i)
2

µ̂i
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Fitting a Quasi-Poisson Model

The previous slide suggests we can fit a Quasi-Poisson model with these steps:

1 Fit the original Poisson model (with no overdispersion)

2 Calculate the Pearson X2 test statistic

3 Estimate ϕ̂ = X2

n−p−1

4 Compute the correct standard errors for β̂ as the square root of the
diagonal elements of ϕ̂× V̂ar (β̂), where V̂ar (β̂) is the estimated
variance-covariance matrix obtained from step 1

Thankfully, most software has a shortcut to fit this model

family = ‘quasipoisson’ in the glm() function in R

‘scale = pearson’ option in PROC GENMOD

Since the standard errors need to be estimated, t- and F-distributions are
used for testing regression coefficients and comparing nested models. This
is analogous to the linear model setting, for which the MSE needs to be
estimated.
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Poisson-Gamma Mixture Model

Suppose we formulate the problem as a hierarchy such that:

Y | µ ∼ Poisson(µ) µ ∼ Gamma (α, β)

Thinking about the marginal distribution of Y ...

1 What distribution does Y follow?

2 What is E [Y ]?

3 What is Var [Y ]?

BIOS 509 Emory University 10 April 2023 42 / 62



Poisson-Gamma Mixture Model

Y | µ ∼ Poisson(µ) µ ∼ Gamma (α, β)

fY (y) =

∫
µ

fY |µ(y) · fµ(µ)dµ

=

∫ ∞

0

µye−µ

y!
· 1

Γ(α)βα
µα−1e−

µ
β dµ

=
1

y!Γ(α)βα

∫ ∞

0

µ(y+α)−1e−µ( β
β+1 )

−1

dµ

=
Γ(y + α)

(
β

β+1

)y+α

Γ(y + 1)Γ(α)βα

∫ ∞

0

1

Γ(y + α)
(

β
β+1

)y+αµ
(y+α)−1e−µ( β

β+1 )
−1

dµ

=
Γ(y + α)

Γ(y + 1)Γ(α)

(
1

β + 1

)α (
1− 1

β + 1

)y
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Negative Binomial Model

The marginal distribution of Y is Negative Binomial!

Y ∼ NB

(
y; r = α, p =

1

β + 1

)
where

y: number of failures in an experiment

r: number of successes until experiment is stopped

p: probability of success

E [Y ] = r
p (1− p) = αβ = µ

Var [Y ] = r
p2 (1− p) = αβ(1 + β) = αβ + αβ2 = µ+ µ2

α

α−1 is the “dispersion” parameter and must be estimated

limα→∞ Var[Y ] = µ

For large enough α, the NB model approaches the Poisson model

BIOS 509 Emory University 10 April 2023 44 / 62



Some Notes on the Negative Binomial Model

If the data are overdispersed, but we don’t believe Var (Y ) = ϕµ, we can use
Negative Binomial regression as a more flexible approach.

α is usually treated as unknown, and is simultaneously estimated with the
regression coefficients.

For known α, the canonical link is the log link. If you use this link you
still have the relative risk interpretation.

If α is unknown, then the Negative Binomial distribution cannot be
represented as an exponential family.

If you intend to compare multiple NB model fits using deviance, you need
to ensure α is the same between each of them.
There is no formal GOF test for NB models.

The likelihood ratio test is still fair game for nested models.
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Test for Overdispersion via Negative Binomial Model

A Poisson model can be viewed as a special case of the corresponding NB
model where α−1 = 0. This can be used to evaluate evidence of overdispersion.

Suppose we fit both a Poisson model MP and NB model MNB with the same
predictors. We can conduct a formal test for overdispersion.

H0 : α−1 = 0 (no overdispersion) H1 : α−1 > 0 (overdispersion)

X2 = −2 {lP (µ̂MP
)− lNB(µ̂MNB

)} ∼ χ2
1

If 2× Pr(χ2
1 > X2) < 0.05, then there is evidence of overdispersion. Note this

is a one-sided test, so the usual p-value is doubled.
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MLS Example: Checking for Overdispersion

A quick and easy way to check for overdispersion is to compare ϕ̂ to 1, since
this is its expected value under the Poisson assumptions. A general rule of
thumb is that overdispersion exists if ϕ̂ > 1.5.

In our case,
X2

M3

452 = 2.15 > 1.5, so there is some evidence of overdispersion.

Another helpful check is to split the data into multiple groups (usually defined
using the explanatory variables), and then plot the means and variances of the
outcome. In our case, suppose we split on player position and five
equally-sized bins of the transformed wage variable.
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MLS Example: Checking for Overdispersion

Figure: Evaluating Overdispersion in Observed Counts
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MLS Example: Quasi-Poisson Regression

Quasi-Poisson Poisson
RR 95% CI RR 95% CI

(Intercept) 0.095 (0.073, 0.125) 0.095 (0.079, 0.115)
lWage 1.093 (0.905, 1.319) 1.093 (0.961, 1.242)
MF 1.389 (0.967, 1.995) 1.389 (1.085, 1.778)
FW 4.001 (2.855, 5.609) 4.001 (3.178, 5.037)
lWage × MF 1.281 (1.030, 1.592) 1.281 (1.104, 1.486)
lWage × FW 1.056 (0.857, 1.300) 1.056 (0.916, 1.217)

Table: Parameter Estimates for Quasi-Poisson and Poisson Interaction Models

The point estimates match, but the confidence intervals are wider for the
Quasi-Poisson model.

The midfielder (MF) main effect is no longer significant. Using the
Quasi-Poisson model, we do not have enough evidence to suggest xGCp90
differs between midfielders and defenders who are making $100,000.
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MLS Example: Negative Binomial Regression

Quasi-Poisson Poisson Negative Binomial
RR 95% CI RR 95% CI RR 95% CI

(Intercept) 0.10 (0.07, 0.13) 0.10 (0.08, 0.12) 0.09 (0.07, 0.12)
lWage 1.09 (0.91, 1.32) 1.09 (0.96, 1.24) 1.12 (0.95, 1.31)
MF 1.39 (0.97, 2.00) 1.39 (1.09, 1.78) 1.51 (1.10, 2.07)
FW 4.00 (2.86, 5.61) 4.00 (3.18, 5.04) 3.99 (2.89, 5.52)
lWage × MF 1.28 (1.03, 1.59) 1.28 (1.10, 1.49) 1.21 (0.99, 1.47)
lWage × FW 1.06 (0.86, 1.30) 1.06 (0.92, 1.22) 1.03 (0.85, 1.25)

Table: Parameter Estimates for All Interaction Models

The estimates from the NB model are similar in both direction and
magnitude.

The confidence intervals are narrower than the Quasi-Poisson model but
still wider than the Poisson model.
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MLS Example: Negative Binomial Regression

Quasi-Poisson Poisson Negative Binomial
RR 95% CI RR 95% CI RR 95% CI

(Intercept) 0.10 (0.07, 0.13) 0.10 (0.08, 0.12) 0.09 (0.07, 0.12)
lWage 1.09 (0.91, 1.32) 1.09 (0.96, 1.24) 1.12 (0.95, 1.31)
MF 1.39 (0.97, 2.00) 1.39 (1.09, 1.78) 1.51 (1.10, 2.07)
FW 4.00 (2.86, 5.61) 4.00 (3.18, 5.04) 3.99 (2.89, 5.52)
lWage × MF 1.28 (1.03, 1.59) 1.28 (1.10, 1.49) 1.21 (0.99, 1.47)
lWage × FW 1.06 (0.86, 1.30) 1.06 (0.92, 1.22) 1.03 (0.85, 1.25)

Table: Parameter Estimates for All Interaction Models

While it is very close, neither interaction term is on its own significant in
the NB model.

A likelihood ratio test comparing the NB model with interaction to the
NB model without interaction suggests interaction is not significant
(X2

2 = 5.51, p = 0.0635).
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MLS Example: Test for Overdispersion via NB

Let us compare the Poisson model MP and NB model MNB , both with
interaction. We can conduct a formal test for overdispersion.

H0 : α−1 = 0 (no overdispersion) H1 : α−1 > 0 (overdispersion)

X2 = −2 {lP (µ̂MP
)− lNB(µ̂MNB

)}
= 161.93

⇒ 2× Pr(χ2
1 > 161.93) < 0.0001

Thus, there is evidence of overdispersion.
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MLS Example: Model Comparison

One way to compare unnested likelihood-based models is using Akaike’s
Information Criterion (AIC). The AIC is calculated as:

2p− 2l(µ̂)

where p is the number of parameters in the model.

Here is a table comparing the likelihood-based models (linear model included):

Family Model AIC
Gaussian Main Effects Only 2644.8
Gaussian Interaction 2636.3
Poisson Main Effects Only 2234.4
Poisson Interaction 2219.4
Negative Binomial Main Effects Only 2061.0
Negative Binomial Interaction 2059.5

Table: Likelihood-Based Model Comparison

Lower values are better, so both NB models are the best by this criteria.
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MLS Example: Final Model Interpretation

RR 95% CI
(Intercept) 0.083 (0.071, 0.097)
lWage 1.221 (1.136, 1.311)
MF 1.983 (1.665, 2.362)
FW 3.984 (3.336, 4.758)

Table: Parameter Estimates for Negative Binomial Model (without interaction)

A defender earning $100,000 has an xGCp90 of 0.083 (95% CI: 0.071,
0.097).

For a 10% increase in annual wage, xGCp90 increases by a factor of
exp(log(1.221)× log(1.1)) = 1.019, holding position fixed.

Midfielders have 98.3% more xGCp90 compared to defenders who earn
the same wage (95% CI: 66.5%, 136.2%).

Forwards have an estimated 3.984 times the xGCp90 compared to
defenders who earn the same wage (95% CI: 3.336, 4.758).
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Outline
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Residuals

Pearson Residuals

ei =
yi − µ̂i√
V̂ar (Yi)

Note that the Pearson residual for observation i is simply the square root
of the ith component of the Pearson X2 statistic.

Deviance Residuals
ei =

√
di × sign(yi − µ̂i)

Where di is the ith component of the deviance such that D =
∑

i di
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Standardized Residuals

Both the Pearson and deviance residuals can be standardized by dividing
by their asymptotic standard errors:

e∗i =
ei√
1− ĥi

Here ĥi is the estimated leverage for the ith observation.

The standardized versions should follow a standard normal distribution.

In R the standardized residuals can be obtained with rstandard(). In
PROC GENMOD they can be obtained using STDRESCHI and
STDRESDEV in the OUTPUT statement.

DFBETAs, DFFITs, and Cook’s D can all be calculated for GLMs as well.
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MLS Example: Examining Model Fit

Figure: Examining Model Fit to Observed Data
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MLS Example: Checking Model Assumptions

Figure: Evaluating Linearity on the Link Function Scale
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MLS Example: Checking Model Assumptions

Figure: Evaluating Normality of Residuals
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MLS Example: Checking Model Assumptions

Figure: Evaluating Independence of Observations
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Helpful Resources

Generalized Linear Models with Examples in R (Dunn and Smyth 2018)

Beyond Multiple Linear Regression (Roblack and Legler 2021)

Generalized Linear Models: Residuals and Diagnostics (Horvath 2019)

Notes for Predictive Modeling (Garćıa-Portugués 2023)

Modeling Count Data (PSU)
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https://link.springer.com/book/10.1007/978-1-4419-0118-7
https://bookdown.org/roback/bookdown-BeyondMLR/ch-poissonreg.html
https://rpubs.com/benhorvath/glm_diagnostics
https://bookdown.org/egarpor/PM-UC3M/glm.html
https://online.stat.psu.edu/stat504/lesson/9/9.2-0
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